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PHASE DIAGRAM OF ISING MODELS WITH
RANDOM SUBLATTICE VACANCIES

Chin-Kun Hu and P. Kieban

.i Department of Physics and Astronomy

and

* Laboratory for Surface Science and Technology

University of Maine
Orono, Maine 04469, USA

Abstract

'We use a modified Kadanoff's variational method to calculate the phase
44

diagram of an Ising model with random vacancies on one of two interpenetrating

sublattices of the isotropic square (SQ) and body-centered cubic (BCC) lattices.

We find second order phase transitions only for T>O. The transition temperature

to very good approximation decreases linearly with impurity (i.e. vacancy) concen-

tration at small concentration. This agrees with the linear decrease observed in

other systems. A plausible explanation of the absence of first order transitions

for T>O is given.

The relation of our models to certain percolation problems is similar to that

of some spin models studied by Syozi. Thus our results allow an estimate of

critical probabilities for percolation.

1. Introduction

In recent years, much attention has been paid to extensions of the ordinary

spin 1/2 Ising model, such as the Potts model 1-3 and spin one models 4-1. An

example of the latter is the Blume-Capel model 4,5 represented by the Hamiltonian:

H -JE Si Sj - D: (I-Si2) - BrS i  (1)

<nn>

where si, s. = , 0, -, nn> is a sum over nearest neighbor si, s. on the lattice,

and 0 is the zero-field splitting parameter. Eq. (1) may be considered as an Ising

X, .,
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model with annealed impurities (or random vacancies) represented by the zero

component of spins s. The thermal average impurity concentration is controlled

by the parameter D. As D/J ---, the system reduces to the pure Ising model. MeanI 5-6field , Monte-Carlo , and renormalization group 9-l (R G) studies of Eq. (1)

indicate that the order-disorder phase transitions of this model consist of a line

which is first order at low temperatures and second order at high temperatures. It

is generally agreed that two regions meet at a tricritical point; however, the

location of this point is not exactly known.

In this paper, we apply a modified Kadanoff's Variational method (MKVM)
12 15

to calculate the phase diagram of a related model given by:

H -Ja s. - DE (I-s2 ) -BZ 0i - BZ sit (2)S<nn>i j i i

where oi = I 1, s. = 1, 0, -1, <nn> denotes nearest neighbors as in Eq. (11), J>O

and D is a zero-field splitting parameter for sj* We consider Eq. (2) for SQ and

BCC lattices in two and three dimensions respectively. We give results for the

B=O case only. The spins se are located on one of two interpenetrating sublattices,

the spins oi on the other. The two dimensional case is illustrated in Fig. 1. In

three dimensions the spins oi sit on a simple cubic lattice with a spin si at the

center of each unit cell. Eq (2) may be considered as an Ising model with annealed

impurities or vacancies present on any site j of one sublattice w'hen s. = 0. The

thermal average of impurities is controlled by D as in Eq. ( D/J- -, Eq (2)

also reduces to a pure Ising model. In sect. II, we calculate phase diagrams of

our model and find that the order-disorder transitions of Eq (2) for T>O consist of

a line of second order transitions only. The first order line found in the phase

boundary calculated from Eq. (1) is no longer present. A plausible argument for

this difference is given . In sect. I1, we consider our models at T-1O. Our models

16are closely related to some systems studied by Syozi . Each of these spin models

has a corresponding percolation problem. The spin system phase boundary for the

order-disorder transition at T-O gives an accurate estimate of the critical proba-

bility for the corresponding percolation problem. Thus, the critical percolation
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probabilities for our models may be estimated from our calculated phase boundaries

at T+O.

II. Method of Calculation and Results

The method of calculation is essentially the same as that reported in previous

papers 13-14. We briefly review it here. We consider Eq (2) for two dimensional

square (SQ) and three dimensional body-centered cubic (BCC) lattices. The Hamil-

tonian of Eq (2) may be rewritten as:

H =Z ~xR" (3)
R

V =JS (C +...+a) +D (I-SR2) +B(+...+a)+BSR (4)R 9 1 R

where R is a unit hypercube of the a spin lattice with i (=2d, d being the space

dimension) a spins at the corners and one s spin in the center. This is illustrated

in Fig. 1 for the two dimensional case. Performing an exact decimation calculation

for the partition function of Eq. (3), which sums over the central s spin in each

cell, we obtain an effective Hamiltonian for the remaining a spins. The resulting

unit cell potential is:

Veff = 6B(a I +...+z)/z + OD (5)

+ In I + 2 exp (- D) cosh (8B + OJ (a1 +...+az)),

where s = . In two dimensions, for the case B = 0, which we examine below, Eq (5)

is equivalent to a o spin Hamiltonian with nearest neighbcr, next nearest neighbor,

and four spins (around a unit hypercube) interactions. In three dimensions, there

are also six and eight spin interactions. For given J, D and a, we then use Eq (5)

as lot the initial cell potential, and carry out the step by step RG transformation.

We calculate the free energy (f), internal energy (U) and spontaneous magnetization (M1)

per spin (here M -<aj > + <sj>). The average occupation number of the zero component

of s spin <n0>, ie the concentration of impurities or vacancies, is given by:

af 1 2'
<n > - - = < - S. > (6)0 D ( S D ) 2 -(, ) .... n

U.HC
PCOI~ iU 0

.INSPI rPCnED: .
. 0-
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<no > is calculated using the chain rule, by the same method used to calculate U

and M (Eq (17) of paper 14 with q representing SD). AS D/J - -- or a, <no> 0 or 0.5

respectively. From the behavior of the coupling constants (tending to larger or

smaller values), we know whether the system is in.an ordered or disordered state.

From a simple ground state energy argument, it is obvious that for B = 0 the order-

disorder transitions occur only in the region D < 1. The MKVM 14-15 is known to

give accurate values for the transition temperature over a wide range of parameter

values.

The calculated phase diagrams (for B = 0) are shown in Fig. 2, where T is the

transition temperature of the pure Ising model calculated with the MKVM method,
J-

which gives ' - 0.4576223 and 0.1621341 for the SQ and BCC lattices respectively.
Fr0 17 . 18For comparison, the exact or series expansion values of -- for SQ and BCC

lattices are 0.44068679... and 0.15740 + 0.0003 respectively. The part of the

diagram under the curve is in an ordered state and above the curve in a disordered

state. We calculated U, M and <n0> near the phase boundary and found that there is

no discontinuity across the phase boundary even as DZ- l and Tc +0. For example,

for SQ lattices at T= 0.9925, we found that AU = 10-1 j A<no> 10-13 and

AM Pi 10-2 where AQ = Q (T+ ) - Q (Tc-t) with Q being U, <n > or M, T being the
c0 0 c

phase transition temperature for given and L beingvery small number. The AQ

values just mentioned are of the same order of magnitude as numerical errors

arising from truncation and the approximate location of Tc , etc. We may thus con-

clude that the transition is always second order rather than first order for T>0.

In Fig. 3, we have converted the phase diagram of Fig. 2 to Tc/To versus <n0>. It

is interesting to note that as <n0 > approaches the critical concentration <no>c,

above which there is no phase transition at all, Tc decreases smoothly to zero at

<no0 c = 0.26 in the SQ lattice while Tc jumps rapidly to zero near <no>c = 0.42 in

the BCC lattice. In the later case U and M still change continuously when crossing

the phase boundary. Mean field 6 and Monte-Carlo 8 studies of the phase diagram for

the Blume-Capel Model (on a SQ lattice) indicate that at T = 0J<no>c for this model

is 1.0.
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The part of Fig. 3 for small <no> is enlarged and reproduced in Fig. 4, which
indicates that, to very good approximation, Tc decreases linearly with <no> for

small <n0>. The slopes of the straight lines in Fig. 4 are 1.683 + 0.002 and

1.116 + 0.001 for SQ and BCC lattices, respectively. The phase transition temper-

19 2atures of the Ising model with quenched or annealed 20 bond impurities have also

been studied by series expansion method and are found to decrease linearly with

small impurity concentration. It has also been observed experimentally 21 that in

nickel-rich, nickel-titanium alloys the ferromagnetic Curic temperature decreases,

to very good approximation, linearly with titanium concentration x, for x - 1.5%.

The approximately linear decreast of T with small impurity concentration is perhaps~c

a rather general phenomena.

Now, we give a plausible explanation for the absence of a first order phase

transition in the model of Eq. (2) for T>0. A system at a second order phase

transition is characterized by an infinite correlation length E, ie a perturbation

at one point can propagate to points an infinite distance away. In the model of

Eq. (2), the impurities (zero component of s.) appear only on one sublattice. In

the region of interest, P < 1, the spins a on the other sublattice always have non-

zero effective coupling (see Eq. (5)). Thus the correlation length can easily extend

to infinity at Tc, in contrast to the model of Eq. (1), where impurities can appear

in both sublattices and thus more easily destroy the propagation of a perturbation

from one point to another far away point.

We can also understand the absence of first order transitions as follows. For

a square lattice one expects a first order transition for <, at low T values,

if it exists anywhere. It follows from Eq. (5) that the (exact) decimation of the

spins si generates (for B = 0) effective nearest neighbor, next nearest neighbor,

and four spin interactions that we denote Jnn' Jnnn' and J4 respectively. By
permutation symmetry one has Jnn = J nnn In general, Jnn > 0 for ferromagnetic

J (J > 0). In the region of possible first order transitions one can show that
J4 > 0 as well. Thus when the vacancies are summed away all interactions promote



ferromagnetic ordering of the a spins in this region, and a second order transition

(of simple Ising type) is to be expected, as we find in our MKVM calculation. The

conclusion of the absence of first order transitions on a BCC lattice for< 18J

can also be reached by a similar argument.

III. Low Temperature Limits

Syozi 16 has calculated the exact phase diagrams of Ising models on decorated
flewtvL 11

square (SQ), honeycomb (HC ) andAtriangular (PT) lattices with spins s = on

each lattice site and spins s = 1 on each nearest neighbor bond. He also calculated

phase diagrams for Ising models onAsemi-dil-te honeycomb lattice: where the spins

s = and s = I spins are on two equivalent interpenetrating sublattices as in the

present case. The phase boundaries of Syozi's models at T-*O give the critical

concentration P of spins (1-P is the vacancy concentraiton ) on sites of s = 1
C c

spins above which ferromagnetism can occur. It turns out that Pc calculated in this

way is exactly equal or very close to the critical probability of the corresponding

bond 22 (for decorated lattices) or sublattice-site (for, semi-dilute HC lattice

percolation problems. For the Syozi model:

PC (decorated SQ) = 0.5

Pc (decorated FT) = I- Pc (decorated HC) = = 0.3522

Pc (semi-dilute H) = 0.5.

For the percolation problem 22, 23.

Pc (bond, SQ) = 0.5

P (bond, PT) = 1- P (bond, HC) = 2 sin 48I = 0.349...
P (sublattice site, H ) = 0.5 (8)C

It is obvious that our model of Eq (2) on the SQ and BCC lattices is just an

Ising model on a semi-dilute SQ or BCC lattice and its low temperature behavior is

similar to the Syozi modcls. Thus, the critical probabilities Pc of the sublattice-

site percolation problem on the SQ and BCC lattices can be estimated from <no>c of

Fig. 3. P is given by

PC = - 2 <no>c. (9)



Applying Eq. (9) to <no>c of Fig. 3, we have PC 0.48, 0.16 for the SQ and BCC

lattices respectively.

Acknowledgments

The authors are indebted to Professor R. B. Griffiths for useful discussion

and the referee for valuable comments on our paper. This work was supported by the

Office of Naval Research.

U L



Pigure Captions

Fig. 1. Lattice of Eq. (2) in two dimensions. Dots (.) spins oi , crosses (x)

spins si. The dotted lines enclose a unit hypercube of the a spin lattice.

Fig. 2. Transition temperature Tc vs. D/Jz obtained for a two dimensional SQ (+)

lattice and a three dimensional BCC (A) lattice.

Fig. 3. Transition temperature vs. impurity concentration <no> for a SQ (+) and a

BCC (A) lattice.

Fig. 4. Part of the curves in Fig. 3 for <no> <2.6%. The solid curves are obtained

by a linear least square fit to the data points.
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